196 research outputs found

    Recent trends in analytical methods to determine new psychoactive substances in hair

    Get PDF
    New Psychoactive Substances (NPS) belong to several chemical classes, including phenethylamines, piperazines, synthetic cathinones and synthetic cannabinoids. Development and validation of analytical methods for the determination of NPS both in traditional and alternative matrices is of crucial importance to study drug metabolism and to associate consumption to clinical outcomes and eventual intoxication symptoms. Among different biological matrices, hair is the one with the widest time window to investigate drug-related history and demonstrate past intake. The aim of this paper was to overview the trends of the rapidly evolving analytical methods for the determination of NPS in hair and the usefulness of these methods when applied to real cases. A number of rapid and sensitive methods for the determination of NPS in hair matrix has been recently published, most of them using liquid chromatography coupled to mass spectrometry. Hair digestion and subsequent solid phase extraction or liquid-liquid extraction were described as well as extraction in organic solvents. For most of the methods limits of quantification at picogram per milligram hair were obtained. The measured concentrations for most of the NPS in real samples were in the range of picograms of drug per milligram of hair. Interpretation of the results and lack of cut-off values for the discrimination between chronic consumption and occasional use or external contamination are still challenging. Methods for the determination of NPS in hair are continually emerging to include as many NPS as possible due to the great demand for their detection

    Anesthesiologic Management for Awake Craniotomy

    Get PDF

    Correlation between blood and oral fluid psychoactive drug concentrations and cognitive impairment in driving under the influence of drugs

    Get PDF
    The effects of drugs on driving performance should be checked with drug concentration in the brain and at the same time with the evaluation of both the behavioural and neurophysiological effects. The best accessible indicator of this information is the concentration of the drug and/or metabolites in blood and, to a certain extent, oral fluid. We sought to review international studies on correlation between blood and oral fluid drug concentrations, neurological correlates and cognitive impairment in driving under the influence of drugs. Methods : Relevant scientific articles were identified from PubMed, Cochrane Central, Scopus, Web of Science, Science Direct, EMBASE up to April 2017. Results : Up to 2010, no epidemiological studies were available on this matter and International scientists suggested that even minimal amounts of parent drugs in blood and oral fluid could affect driving impairment. More recently, epidemiological data, systematic reviews and meta-analysis on drugged drivers allowed the suggestion of impairment concentration limits for the most common illicit drugs. These values were obtained comparing driving disability induced by psychotropic drugs with that of established blood alcohol limits. Differently from ethyl alcohol where both detection methods and concentration limits have been well established even with inhomogeneity of ranges within different countries, in case of drugs of abuse no official cut-offs have yet been established, nor any standardized analytical protocols. Conclusion : Multiple aspects of driving performance can be differently affected by illicit drugs, and even if for few of them some dose/concentration dependent impairment has been reported, a wider knowledge on concentration/impairment relationship is still missin

    CMStalker: a combinatorial tool for composite motif discovery

    Get PDF
    Controlling the differential expression of many thousands different genes at any given time is a fundamental task of metazoan organisms and this complex orchestration is controlled by the so-called regulatory genome encoding complex regulatory networks: several Transcription Factors bind to precise DNA regions, so to perform in a cooperative manner a specific regulation task for nearby genes. The in silico prediction of these binding sites is still an open problem, notwithstanding continuous progress and activity in the last two decades. In this paper we describe a new efficient combinatorial approach to the problem of detecting sets of cooperating binding sites in promoter sequences, given in input a database of Transcription Factor Binding Sites encoded as Position Weight Matrices. We present CMStalker, a software tool for composite motif discovery which embodies a new approach that combines a constraint satisfaction formulation with a parameter relaxation technique to explore efficiently the space of possible solutions. Extensive experiments with twelve data sets and eleven state-of-the-art tools are reported, showing an average value of the correlation coefficient of 0.54 (against a value 0.41 of the closest competitor). This improvements in output quality due to CMStalker is statistically significant

    Model of murine ventricular cardiac tissue for in vitro kinematic-dynamic studies of electromagnetic and beta2-adrenergic stimulation

    Get PDF
    In a model of murine ventricular cardiac tissue in vitro, we have studied the inotropic effects of electromagnetic stimulation (frequency, 75 Hz), isoproterenol administration (10 μM), and their combination. In particular, we have performed an image processing analysis to evaluate the kinematics and the dynamics of beating cardiac syncytia starting from the video registration of their contraction movement. We have found that the electromagnetic stimulation is able to counteract the β-adrenergic effect of isoproterenol and to elicit an antihypertrophic response

    FPF-SB: a Scalable Algorithm for Microarray Gene Expression Data Clustering

    Get PDF
    Efficient and effective analysis of large datasets from microarray gene expression data is one of the keys to time-critical personalized medicine. The issue we address here is the scalability of the data processing software for clustering gene expression data into groups with homogeneous expression profile. In this paper we propose /FPF-SB/, a novel clustering algorithm based on a combination of the Furthest-Point-First (FPF) heuristic for solving the /k/-center problem and a stability-based method for determining the number of clusters /k/. Our algorithm improves the state of the art: it is scalable to large datasets without sacrificing output quality

    Atrophy, oxidative switching and ultrastructural defects in skeletal muscle of the ataxia telangiectasia mouse model

    Get PDF
    Ataxia telangiectasia is a rare, multi system disease caused by ATM kinase deficiency. Atm-knockout mice recapitulate premature aging, immunodeficiency, cancer predisposition, growth retardation and motor defects, but not cerebellar neurodegeneration and ataxia. We explored whether Atm loss is responsible for skeletal muscle defects by investigating myofiber morphology, oxidative/glycolytic activity, myocyte ultrastructural architecture and neuromuscular junctions. Atm-knockout mice showed reduced muscle and fiber size. Atrophy, protein synthesis impairment and a switch from glycolytic to oxidative fibers were detected, along with an increase of in expression of slow and fast myosin types (Myh7, and Myh2 and Myh4, respectively) in tibialis anterior and solei muscles isolated from Atm-knockout mice. Transmission electron microscopy of tibialis anterior revealed misalignments of Z-lines and sarcomeres and mitochondria abnormalities that were associated with an increase in reactive oxygen species. Moreover, neuromuscular junctions appeared larger and more complex than those in Atm wild-type mice, but with preserved presynaptic terminals. In conclusion, we report for the first time that Atm-knockout mice have clear morphological skeletal muscle defects that will be relevant for the investigation of the oxidative stress response, motor alteration and the interplay with peripheral nervous system in ataxia telangiectasia

    Production of soy protein concentrate with the recovery of bioactive compounds: from destruction to valorization

    Get PDF
    This work aimed to develop a novel methodology based on aqueous micellar systems (AMS), for producing soy protein concentrates (SPC) from soybean flour and recovering high-valuable bioactive compounds as by-products. Ethoxylated aliphatic alcohols Tergitol 15-S-7 and Tergitol 15-S-9, non-toxic and biodegradable surfactants, were selected to form the AMS. The methodology consisted of an extractive stage of soybean flour with AMS, which rendered both a pellet, i.e., the SPC, and a supernatant containing the extracted bioactive compounds. The latter was further heated above the cloud point temperature, thus resulting in a biphasic system formed by a micelle-rich phase (MP) and an aqueous phase (AP). Obtained SPC showed a noticeable loss (∼90%) of trypsin inhibitor activity, a total protein content close to 60%, soluble protein amounts varying from 19% to 34%, and remarkable released (by simulated digestion) antioxidant and antihypertensive activities. Those indicators are similar to or even better than those corresponding to SPC from the classical acid-extraction method. The AMS also exhibited an enhanced efficiency for extracting antinutrients such as non-digestible oligosaccharides, trypsin inhibitors, and lectins mostly recovered at the AP and separated from isoflavones, which were concentrated and isolated at the MP. The recovery of all the mentioned bioactive compounds, whether beneficial or undesirable, broadens their uses in research, food, and pharmacological fields. This successful performance, simplicity, scalability, and sustainability make the proposed AMS-based extraction a powerful tool for processing plant derivatives and valorizing their by-products.info:eu-repo/semantics/publishedVersio

    ERK-1 MAP kinase prevents TNF-induced apoptosis through bad phosphorylation and inhibition of bax translocation in HeLa cells

    Get PDF
    Extracellular signal-regulated kinase (ERK) 1/2 signaling is involved in tumor cell survival through the regulation of Bcl-2 family members. To explore this further and to demonstrate the central role of the mitochondria in the ERK1/2 pathway we used the HeLa cellular model where apoptosis was induced by tumor necrosis factor (TNF) and cycloheximide (CHX). We show that HeLa cells overexpressing ERK-1 displayed resistance to TNF and CHX. HeLa cells overexpressing a kinase-deficient form of ERK-1 (K71R) were more sensitive to TNF and CHX. In the ERK-1 cells, Bad was phosphorylated during TNF + CHX treatment. In the HeLa wt cells and in the K71R clones TNF and CHX decreased Bad phosphorylation. ERK-1 cells treated with TNF and CHX did not release cytochrome c from the mitochondria. By contrast, HeLa wt and K71R clones released cytochrome c. Bax did not translocate to the mitochondria in ERK-1 cells treated with TNF + CHX. Conversely, HeLa wt and K71R clones accumulated Bax in the mitochondria. In the HeLa wt cells and in both ERK-1 transfectants Bid was cleaved and accumulated in the mitochondria. The caspase-8 inhibitor IETD-FMK and the mitochondrial membrane permeabilization inhibitor bongkrekic acid (BK), partially prevented cell death by TNF + CHX. Anisomycin, a c-Jun N-terminal kinases activator, increased TNF-killing. The ERK-1 cells were resistant to TNF and anisomycin, whereas K71R clones resulted more sensitive. Our study demonstrates that in HeLa cells the ERK-1 kinase prevents TNF + CHX apoptosis by regulating the intrinsic mitochondrial pathway through different mechanisms. Inhibition of the intrinsic pathway is sufficient to almost completely prevent cell death. © 2009 Wiley-Liss, Inc
    • …
    corecore